Metamath Proof Explorer


Theorem recrecd

Description: A number is equal to the reciprocal of its reciprocal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 ( 𝜑𝐴 ∈ ℂ )
reccld.2 ( 𝜑𝐴 ≠ 0 )
Assertion recrecd ( 𝜑 → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 div1d.1 ( 𝜑𝐴 ∈ ℂ )
2 reccld.2 ( 𝜑𝐴 ≠ 0 )
3 recrec ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )
4 1 2 3 syl2anc ( 𝜑 → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 )