| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
| 2 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
| 3 |
|
rereccl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 4 |
2 3
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
| 5 |
|
1re |
⊢ 1 ∈ ℝ |
| 6 |
|
ltaddpos |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( 0 < ( 1 / 𝐴 ) ↔ 1 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 7 |
4 5 6
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < ( 1 / 𝐴 ) ↔ 1 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 8 |
1 7
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 1 < ( 1 + ( 1 / 𝐴 ) ) ) |
| 9 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 10 |
5 4 9
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 11 |
|
0lt1 |
⊢ 0 < 1 |
| 12 |
|
0re |
⊢ 0 ∈ ℝ |
| 13 |
|
lttr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < ( 1 + ( 1 / 𝐴 ) ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 14 |
12 5 10 13
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 0 < 1 ∧ 1 < ( 1 + ( 1 / 𝐴 ) ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 15 |
11 14
|
mpani |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) |
| 16 |
8 15
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 + ( 1 / 𝐴 ) ) ) |
| 17 |
|
recgt1 |
⊢ ( ( ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 + ( 1 / 𝐴 ) ) ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) ) |
| 18 |
10 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) ) |
| 19 |
8 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ) |
| 20 |
|
ltaddpos |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( 0 < 1 ↔ ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) ) |
| 21 |
5 4 20
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 0 < 1 ↔ ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) ) |
| 22 |
11 21
|
mpbii |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) < ( ( 1 / 𝐴 ) + 1 ) ) |
| 23 |
4
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 24 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 25 |
|
addcom |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 / 𝐴 ) + 1 ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 26 |
23 24 25
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) + 1 ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 27 |
22 26
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ) |
| 28 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
| 29 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
| 30 |
|
ltrec1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 + ( 1 / 𝐴 ) ) ) ) → ( ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |
| 31 |
28 29 10 16 30
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) < ( 1 + ( 1 / 𝐴 ) ) ↔ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |
| 32 |
27 31
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) |
| 33 |
19 32
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 1 ∧ ( 1 / ( 1 + ( 1 / 𝐴 ) ) ) < 𝐴 ) ) |