| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 1  /  𝐴 ) ) | 
						
							| 2 |  | gt0ne0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 3 |  | rereccl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 4 | 2 3 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 |  | ltaddpos | ⊢ ( ( ( 1  /  𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 0  <  ( 1  /  𝐴 )  ↔  1  <  ( 1  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 7 | 4 5 6 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  <  ( 1  /  𝐴 )  ↔  1  <  ( 1  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 8 | 1 7 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  1  <  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 9 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 10 | 5 4 9 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 11 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 12 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 13 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  <  ( 1  +  ( 1  /  𝐴 ) ) )  →  0  <  ( 1  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 14 | 12 5 10 13 | mp3an12i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 0  <  1  ∧  1  <  ( 1  +  ( 1  /  𝐴 ) ) )  →  0  <  ( 1  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 15 | 11 14 | mpani | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  <  ( 1  +  ( 1  /  𝐴 ) )  →  0  <  ( 1  +  ( 1  /  𝐴 ) ) ) ) | 
						
							| 16 | 8 15 | mpd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 17 |  | recgt1 | ⊢ ( ( ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ  ∧  0  <  ( 1  +  ( 1  /  𝐴 ) ) )  →  ( 1  <  ( 1  +  ( 1  /  𝐴 ) )  ↔  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  1 ) ) | 
						
							| 18 | 10 16 17 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  <  ( 1  +  ( 1  /  𝐴 ) )  ↔  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  1 ) ) | 
						
							| 19 | 8 18 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  1 ) | 
						
							| 20 |  | ltaddpos | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( 0  <  1  ↔  ( 1  /  𝐴 )  <  ( ( 1  /  𝐴 )  +  1 ) ) ) | 
						
							| 21 | 5 4 20 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  <  1  ↔  ( 1  /  𝐴 )  <  ( ( 1  /  𝐴 )  +  1 ) ) ) | 
						
							| 22 | 11 21 | mpbii | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  <  ( ( 1  /  𝐴 )  +  1 ) ) | 
						
							| 23 | 4 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 24 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 25 |  | addcom | ⊢ ( ( ( 1  /  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 1  /  𝐴 )  +  1 )  =  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 26 | 23 24 25 | sylancl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 1  /  𝐴 )  +  1 )  =  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 27 | 22 26 | breqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  <  ( 1  +  ( 1  /  𝐴 ) ) ) | 
						
							| 28 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 30 |  | ltrec1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( ( 1  +  ( 1  /  𝐴 ) )  ∈  ℝ  ∧  0  <  ( 1  +  ( 1  /  𝐴 ) ) ) )  →  ( ( 1  /  𝐴 )  <  ( 1  +  ( 1  /  𝐴 ) )  ↔  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  𝐴 ) ) | 
						
							| 31 | 28 29 10 16 30 | syl22anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 1  /  𝐴 )  <  ( 1  +  ( 1  /  𝐴 ) )  ↔  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  𝐴 ) ) | 
						
							| 32 | 27 31 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  𝐴 ) | 
						
							| 33 | 19 32 | jca | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  1  ∧  ( 1  /  ( 1  +  ( 1  /  𝐴 ) ) )  <  𝐴 ) ) |