| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2fveq3 |
⊢ ( 𝑥 = 𝐴 → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = ( *Q ‘ ( *Q ‘ 𝐴 ) ) ) |
| 2 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( *Q ‘ ( *Q ‘ 𝐴 ) ) = 𝐴 ) ) |
| 4 |
|
mulcomnq |
⊢ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) |
| 5 |
|
recidnq |
⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q ( *Q ‘ 𝑥 ) ) = 1Q ) |
| 6 |
4 5
|
eqtrid |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) |
| 7 |
|
recclnq |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ 𝑥 ) ∈ Q ) |
| 8 |
|
recmulnq |
⊢ ( ( *Q ‘ 𝑥 ) ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ Q → ( ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ↔ ( ( *Q ‘ 𝑥 ) ·Q 𝑥 ) = 1Q ) ) |
| 10 |
6 9
|
mpbird |
⊢ ( 𝑥 ∈ Q → ( *Q ‘ ( *Q ‘ 𝑥 ) ) = 𝑥 ) |
| 11 |
3 10
|
vtoclga |
⊢ ( 𝐴 ∈ Q → ( *Q ‘ ( *Q ‘ 𝐴 ) ) = 𝐴 ) |