Metamath Proof Explorer


Theorem recrng

Description: The real numbers form a star ring. (Contributed by Thierry Arnoux, 19-Apr-2019)

Ref Expression
Assertion recrng fld ∈ *-Ring

Proof

Step Hyp Ref Expression
1 rebase ℝ = ( Base ‘ ℝfld )
2 refldcj ∗ = ( *𝑟 ‘ ℝfld )
3 refld fld ∈ Field
4 isfld ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) )
5 3 4 mpbi ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing )
6 5 simpri fld ∈ CRing
7 6 a1i ( ⊤ → ℝfld ∈ CRing )
8 cjre ( 𝑥 ∈ ℝ → ( ∗ ‘ 𝑥 ) = 𝑥 )
9 8 adantl ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → ( ∗ ‘ 𝑥 ) = 𝑥 )
10 1 2 7 9 idsrngd ( ⊤ → ℝfld ∈ *-Ring )
11 10 mptru fld ∈ *-Ring