Step |
Hyp |
Ref |
Expression |
1 |
|
0sno |
⊢ 0s ∈ No |
2 |
|
slttrine |
⊢ ( ( 𝐴 ∈ No ∧ 0s ∈ No ) → ( 𝐴 ≠ 0s ↔ ( 𝐴 <s 0s ∨ 0s <s 𝐴 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ No → ( 𝐴 ≠ 0s ↔ ( 𝐴 <s 0s ∨ 0s <s 𝐴 ) ) ) |
4 |
|
sltneg |
⊢ ( ( 𝐴 ∈ No ∧ 0s ∈ No ) → ( 𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘ 𝐴 ) ) ) |
5 |
1 4
|
mpan2 |
⊢ ( 𝐴 ∈ No → ( 𝐴 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘ 𝐴 ) ) ) |
6 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
7 |
6
|
breq1i |
⊢ ( ( -us ‘ 0s ) <s ( -us ‘ 𝐴 ) ↔ 0s <s ( -us ‘ 𝐴 ) ) |
8 |
5 7
|
bitrdi |
⊢ ( 𝐴 ∈ No → ( 𝐴 <s 0s ↔ 0s <s ( -us ‘ 𝐴 ) ) ) |
9 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
10 |
|
precsex |
⊢ ( ( ( -us ‘ 𝐴 ) ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) |
11 |
9 10
|
sylan |
⊢ ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) → ∃ 𝑦 ∈ No ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) |
12 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ No ∧ ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) ) → 𝑦 ∈ No ) |
13 |
12
|
negscld |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ No ∧ ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) ) → ( -us ‘ 𝑦 ) ∈ No ) |
14 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → 𝐴 ∈ No ) |
15 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → 𝑦 ∈ No ) |
16 |
14 15
|
mulnegs1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = ( -us ‘ ( 𝐴 ·s 𝑦 ) ) ) |
17 |
14 15
|
mulnegs2d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = ( -us ‘ ( 𝐴 ·s 𝑦 ) ) ) |
18 |
16 17
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = ( 𝐴 ·s ( -us ‘ 𝑦 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → ( ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ↔ ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = 1s ) ) |
20 |
19
|
biimpd |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ 𝑦 ∈ No ) → ( ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s → ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = 1s ) ) |
21 |
20
|
impr |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ No ∧ ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) ) → ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = 1s ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = ( -us ‘ 𝑦 ) → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s ( -us ‘ 𝑦 ) ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝑥 = ( -us ‘ 𝑦 ) → ( ( 𝐴 ·s 𝑥 ) = 1s ↔ ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = 1s ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( -us ‘ 𝑦 ) ∈ No ∧ ( 𝐴 ·s ( -us ‘ 𝑦 ) ) = 1s ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
25 |
13 21 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) ∧ ( 𝑦 ∈ No ∧ ( ( -us ‘ 𝐴 ) ·s 𝑦 ) = 1s ) ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
26 |
11 25
|
rexlimddv |
⊢ ( ( 𝐴 ∈ No ∧ 0s <s ( -us ‘ 𝐴 ) ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
27 |
26
|
ex |
⊢ ( 𝐴 ∈ No → ( 0s <s ( -us ‘ 𝐴 ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ) |
28 |
8 27
|
sylbid |
⊢ ( 𝐴 ∈ No → ( 𝐴 <s 0s → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ) |
29 |
|
precsex |
⊢ ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
30 |
29
|
ex |
⊢ ( 𝐴 ∈ No → ( 0s <s 𝐴 → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ) |
31 |
28 30
|
jaod |
⊢ ( 𝐴 ∈ No → ( ( 𝐴 <s 0s ∨ 0s <s 𝐴 ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ) |
32 |
3 31
|
sylbid |
⊢ ( 𝐴 ∈ No → ( 𝐴 ≠ 0s → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) ) |
33 |
32
|
imp |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |