Metamath Proof Explorer


Theorem recsexd

Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses recsexd.1 ( 𝜑𝐴 No )
recsexd.2 ( 𝜑𝐴 ≠ 0s )
Assertion recsexd ( 𝜑 → ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s )

Proof

Step Hyp Ref Expression
1 recsexd.1 ( 𝜑𝐴 No )
2 recsexd.2 ( 𝜑𝐴 ≠ 0s )
3 recsex ( ( 𝐴 No 𝐴 ≠ 0s ) → ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s )
4 1 2 3 syl2anc ( 𝜑 → ∃ 𝑥 No ( 𝐴 ·s 𝑥 ) = 1s )