Metamath Proof Explorer
Description: A non-zero surreal has a reciprocal. (Contributed by Scott Fenton, 16-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
recsexd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
recsexd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0s ) |
|
Assertion |
recsexd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
recsexd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
recsexd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0s ) |
3 |
|
recsex |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 1s ) |