| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 2 | 1 | canth2 | ⊢ ℕ  ≺  𝒫  ℕ | 
						
							| 3 |  | domnsym | ⊢ ( 𝒫  ℕ  ≼  ℕ  →  ¬  ℕ  ≺  𝒫  ℕ ) | 
						
							| 4 | 2 3 | mt2 | ⊢ ¬  𝒫  ℕ  ≼  ℕ | 
						
							| 5 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  𝐴  ⊆  ℝ ) | 
						
							| 7 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 8 | 7 | ntropn | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  𝐴  ⊆  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 9 | 5 6 8 | sylancr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ∈  ( topGen ‘ ran  (,) ) ) | 
						
							| 10 |  | opnreen | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ∈  ( topGen ‘ ran  (,) )  ∧  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≠  ∅ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≈  𝒫  ℕ ) | 
						
							| 11 | 10 | ex | ⊢ ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ∈  ( topGen ‘ ran  (,) )  →  ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≠  ∅  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≈  𝒫  ℕ ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≠  ∅  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≈  𝒫  ℕ ) ) | 
						
							| 13 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 14 | 13 | ssex | ⊢ ( 𝐴  ⊆  ℝ  →  𝐴  ∈  V ) | 
						
							| 15 | 7 | ntrss2 | ⊢ ( ( ( topGen ‘ ran  (,) )  ∈  Top  ∧  𝐴  ⊆  ℝ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ⊆  𝐴 ) | 
						
							| 16 | 5 15 | mpan | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ⊆  𝐴 ) | 
						
							| 17 |  | ssdomg | ⊢ ( 𝐴  ∈  V  →  ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ⊆  𝐴  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  𝐴 ) ) | 
						
							| 18 | 14 16 17 | sylc | ⊢ ( 𝐴  ⊆  ℝ  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  𝐴 ) | 
						
							| 19 |  | domtr | ⊢ ( ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  𝐴  ∧  𝐴  ≼  ℕ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  ℕ ) | 
						
							| 20 | 18 19 | sylan | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  ℕ ) | 
						
							| 21 |  | ensym | ⊢ ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≈  𝒫  ℕ  →  𝒫  ℕ  ≈  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 ) ) | 
						
							| 22 |  | endomtr | ⊢ ( ( 𝒫  ℕ  ≈  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ∧  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  ℕ )  →  𝒫  ℕ  ≼  ℕ ) | 
						
							| 23 | 22 | expcom | ⊢ ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≼  ℕ  →  ( 𝒫  ℕ  ≈  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  →  𝒫  ℕ  ≼  ℕ ) ) | 
						
							| 24 | 20 21 23 | syl2im | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≈  𝒫  ℕ  →  𝒫  ℕ  ≼  ℕ ) ) | 
						
							| 25 | 12 24 | syld | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  ≠  ∅  →  𝒫  ℕ  ≼  ℕ ) ) | 
						
							| 26 | 25 | necon1bd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ¬  𝒫  ℕ  ≼  ℕ  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  =  ∅ ) ) | 
						
							| 27 | 4 26 | mpi | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≼  ℕ )  →  ( ( int ‘ ( topGen ‘ ran  (,) ) ) ‘ 𝐴 )  =  ∅ ) |