Metamath Proof Explorer


Theorem recvs

Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021) (Proof shortened by SN, 23-Nov-2024)

Ref Expression
Hypothesis recvs.r 𝑅 = ( ringLMod ‘ ℝfld )
Assertion recvs 𝑅 ∈ ℂVec

Proof

Step Hyp Ref Expression
1 recvs.r 𝑅 = ( ringLMod ‘ ℝfld )
2 refld fld ∈ Field
3 isfld ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) )
4 3 simprbi ( ℝfld ∈ Field → ℝfld ∈ CRing )
5 4 crngringd ( ℝfld ∈ Field → ℝfld ∈ Ring )
6 rlmlmod ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod )
7 2 5 6 mp2b ( ringLMod ‘ ℝfld ) ∈ LMod
8 rlmsca ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) )
9 2 8 ax-mp fld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) )
10 df-refld fld = ( ℂflds ℝ )
11 9 10 eqtr3i ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂflds ℝ )
12 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
13 12 simpli ℝ ∈ ( SubRing ‘ ℂfld )
14 eqid ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) )
15 14 isclmi ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂflds ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod )
16 7 11 13 15 mp3an ( ringLMod ‘ ℝfld ) ∈ ℂMod
17 12 simpri fld ∈ DivRing
18 rlmlvec ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec )
19 17 18 ax-mp ( ringLMod ‘ ℝfld ) ∈ LVec
20 16 19 elini ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec )
21 df-cvs ℂVec = ( ℂMod ∩ LVec )
22 20 1 21 3eltr4i 𝑅 ∈ ℂVec