Metamath Proof Explorer


Theorem recvs

Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis recvs.r 𝑅 = ( ringLMod ‘ ℝfld )
Assertion recvs 𝑅 ∈ ℂVec

Proof

Step Hyp Ref Expression
1 recvs.r 𝑅 = ( ringLMod ‘ ℝfld )
2 refld fld ∈ Field
3 fldidom ( ℝfld ∈ Field → ℝfld ∈ IDomn )
4 isidom ( ℝfld ∈ IDomn ↔ ( ℝfld ∈ CRing ∧ ℝfld ∈ Domn ) )
5 crngring ( ℝfld ∈ CRing → ℝfld ∈ Ring )
6 5 adantr ( ( ℝfld ∈ CRing ∧ ℝfld ∈ Domn ) → ℝfld ∈ Ring )
7 4 6 sylbi ( ℝfld ∈ IDomn → ℝfld ∈ Ring )
8 3 7 syl ( ℝfld ∈ Field → ℝfld ∈ Ring )
9 2 8 ax-mp fld ∈ Ring
10 rlmlmod ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod )
11 9 10 ax-mp ( ringLMod ‘ ℝfld ) ∈ LMod
12 rlmsca ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) )
13 2 12 ax-mp fld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) )
14 df-refld fld = ( ℂflds ℝ )
15 13 14 eqtr3i ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂflds ℝ )
16 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
17 16 simpli ℝ ∈ ( SubRing ‘ ℂfld )
18 eqid ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) )
19 18 isclmi ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂflds ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod )
20 11 15 17 19 mp3an ( ringLMod ‘ ℝfld ) ∈ ℂMod
21 16 simpri fld ∈ DivRing
22 rlmlvec ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec )
23 21 22 ax-mp ( ringLMod ‘ ℝfld ) ∈ LVec
24 20 23 elini ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec )
25 df-cvs ℂVec = ( ℂMod ∩ LVec )
26 24 1 25 3eltr4i 𝑅 ∈ ℂVec