Step |
Hyp |
Ref |
Expression |
1 |
|
recvs.r |
⊢ 𝑅 = ( ringLMod ‘ ℝfld ) |
2 |
|
refld |
⊢ ℝfld ∈ Field |
3 |
|
isfld |
⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) |
4 |
3
|
simprbi |
⊢ ( ℝfld ∈ Field → ℝfld ∈ CRing ) |
5 |
4
|
crngringd |
⊢ ( ℝfld ∈ Field → ℝfld ∈ Ring ) |
6 |
|
rlmlmod |
⊢ ( ℝfld ∈ Ring → ( ringLMod ‘ ℝfld ) ∈ LMod ) |
7 |
2 5 6
|
mp2b |
⊢ ( ringLMod ‘ ℝfld ) ∈ LMod |
8 |
|
rlmsca |
⊢ ( ℝfld ∈ Field → ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) ) |
9 |
2 8
|
ax-mp |
⊢ ℝfld = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
10 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
11 |
9 10
|
eqtr3i |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) |
12 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
13 |
12
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
14 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) |
15 |
14
|
isclmi |
⊢ ( ( ( ringLMod ‘ ℝfld ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) = ( ℂfld ↾s ℝ ) ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℝfld ) ∈ ℂMod ) |
16 |
7 11 13 15
|
mp3an |
⊢ ( ringLMod ‘ ℝfld ) ∈ ℂMod |
17 |
12
|
simpri |
⊢ ℝfld ∈ DivRing |
18 |
|
rlmlvec |
⊢ ( ℝfld ∈ DivRing → ( ringLMod ‘ ℝfld ) ∈ LVec ) |
19 |
17 18
|
ax-mp |
⊢ ( ringLMod ‘ ℝfld ) ∈ LVec |
20 |
16 19
|
elini |
⊢ ( ringLMod ‘ ℝfld ) ∈ ( ℂMod ∩ LVec ) |
21 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
22 |
20 1 21
|
3eltr4i |
⊢ 𝑅 ∈ ℂVec |