| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recvs.r | ⊢ 𝑅  =  ( ringLMod ‘ ℝfld ) | 
						
							| 2 |  | refld | ⊢ ℝfld  ∈  Field | 
						
							| 3 |  | fldidom | ⊢ ( ℝfld  ∈  Field  →  ℝfld  ∈  IDomn ) | 
						
							| 4 |  | isidom | ⊢ ( ℝfld  ∈  IDomn  ↔  ( ℝfld  ∈  CRing  ∧  ℝfld  ∈  Domn ) ) | 
						
							| 5 |  | crngring | ⊢ ( ℝfld  ∈  CRing  →  ℝfld  ∈  Ring ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ℝfld  ∈  CRing  ∧  ℝfld  ∈  Domn )  →  ℝfld  ∈  Ring ) | 
						
							| 7 | 4 6 | sylbi | ⊢ ( ℝfld  ∈  IDomn  →  ℝfld  ∈  Ring ) | 
						
							| 8 | 3 7 | syl | ⊢ ( ℝfld  ∈  Field  →  ℝfld  ∈  Ring ) | 
						
							| 9 | 2 8 | ax-mp | ⊢ ℝfld  ∈  Ring | 
						
							| 10 |  | rlmlmod | ⊢ ( ℝfld  ∈  Ring  →  ( ringLMod ‘ ℝfld )  ∈  LMod ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ringLMod ‘ ℝfld )  ∈  LMod | 
						
							| 12 |  | rlmsca | ⊢ ( ℝfld  ∈  Field  →  ℝfld  =  ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) ) | 
						
							| 13 | 2 12 | ax-mp | ⊢ ℝfld  =  ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) | 
						
							| 14 |  | df-refld | ⊢ ℝfld  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 15 | 13 14 | eqtr3i | ⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) )  =  ( ℂfld  ↾s  ℝ ) | 
						
							| 16 |  | resubdrg | ⊢ ( ℝ  ∈  ( SubRing ‘ ℂfld )  ∧  ℝfld  ∈  DivRing ) | 
						
							| 17 | 16 | simpli | ⊢ ℝ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 18 |  | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ ℝfld ) )  =  ( Scalar ‘ ( ringLMod ‘ ℝfld ) ) | 
						
							| 19 | 18 | isclmi | ⊢ ( ( ( ringLMod ‘ ℝfld )  ∈  LMod  ∧  ( Scalar ‘ ( ringLMod ‘ ℝfld ) )  =  ( ℂfld  ↾s  ℝ )  ∧  ℝ  ∈  ( SubRing ‘ ℂfld ) )  →  ( ringLMod ‘ ℝfld )  ∈  ℂMod ) | 
						
							| 20 | 11 15 17 19 | mp3an | ⊢ ( ringLMod ‘ ℝfld )  ∈  ℂMod | 
						
							| 21 | 16 | simpri | ⊢ ℝfld  ∈  DivRing | 
						
							| 22 |  | rlmlvec | ⊢ ( ℝfld  ∈  DivRing  →  ( ringLMod ‘ ℝfld )  ∈  LVec ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ ( ringLMod ‘ ℝfld )  ∈  LVec | 
						
							| 24 | 20 23 | elini | ⊢ ( ringLMod ‘ ℝfld )  ∈  ( ℂMod  ∩  LVec ) | 
						
							| 25 |  | df-cvs | ⊢ ℂVec  =  ( ℂMod  ∩  LVec ) | 
						
							| 26 | 24 1 25 | 3eltr4i | ⊢ 𝑅  ∈  ℂVec |