Metamath Proof Explorer


Theorem recxpf1lem

Description: Complex exponentiation on positive real numbers is a one-to-one function. (Contributed by Thierry Arnoux, 1-Apr-2025)

Ref Expression
Hypotheses recxpf1.1 ( 𝜑𝐴 ∈ ℝ )
recxpf1.2 ( 𝜑 → 0 ≤ 𝐴 )
recxpf1.3 ( 𝜑𝐵 ∈ ℝ )
recxpf1.4 ( 𝜑 → 0 ≤ 𝐵 )
recxpf1.5 ( 𝜑𝐶 ∈ ℝ+ )
Assertion recxpf1lem ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴𝑐 𝐶 ) = ( 𝐵𝑐 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 recxpf1.1 ( 𝜑𝐴 ∈ ℝ )
2 recxpf1.2 ( 𝜑 → 0 ≤ 𝐴 )
3 recxpf1.3 ( 𝜑𝐵 ∈ ℝ )
4 recxpf1.4 ( 𝜑 → 0 ≤ 𝐵 )
5 recxpf1.5 ( 𝜑𝐶 ∈ ℝ+ )
6 1 2 3 4 5 cxple2d ( 𝜑 → ( 𝐴𝐵 ↔ ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) ) )
7 3 4 1 2 5 cxple2d ( 𝜑 → ( 𝐵𝐴 ↔ ( 𝐵𝑐 𝐶 ) ≤ ( 𝐴𝑐 𝐶 ) ) )
8 6 7 anbi12d ( 𝜑 → ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) ∧ ( 𝐵𝑐 𝐶 ) ≤ ( 𝐴𝑐 𝐶 ) ) ) )
9 1 3 letri3d ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) ) )
10 5 rpred ( 𝜑𝐶 ∈ ℝ )
11 1 2 10 recxpcld ( 𝜑 → ( 𝐴𝑐 𝐶 ) ∈ ℝ )
12 3 4 10 recxpcld ( 𝜑 → ( 𝐵𝑐 𝐶 ) ∈ ℝ )
13 11 12 letri3d ( 𝜑 → ( ( 𝐴𝑐 𝐶 ) = ( 𝐵𝑐 𝐶 ) ↔ ( ( 𝐴𝑐 𝐶 ) ≤ ( 𝐵𝑐 𝐶 ) ∧ ( 𝐵𝑐 𝐶 ) ≤ ( 𝐴𝑐 𝐶 ) ) ) )
14 8 9 13 3bitr4d ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴𝑐 𝐶 ) = ( 𝐵𝑐 𝐶 ) ) )