| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recxpf1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | recxpf1.2 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 3 |  | recxpf1.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | recxpf1.4 | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 5 |  | recxpf1.5 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 6 | 1 2 3 4 5 | cxple2d | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
						
							| 7 | 3 4 1 2 5 | cxple2d | ⊢ ( 𝜑  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐵 ↑𝑐 𝐶 )  ≤  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
						
							| 8 | 6 7 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 )  ↔  ( ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 )  ∧  ( 𝐵 ↑𝑐 𝐶 )  ≤  ( 𝐴 ↑𝑐 𝐶 ) ) ) ) | 
						
							| 9 | 1 3 | letri3d | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤  𝐵  ∧  𝐵  ≤  𝐴 ) ) ) | 
						
							| 10 | 5 | rpred | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 11 | 1 2 10 | recxpcld | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝐶 )  ∈  ℝ ) | 
						
							| 12 | 3 4 10 | recxpcld | ⊢ ( 𝜑  →  ( 𝐵 ↑𝑐 𝐶 )  ∈  ℝ ) | 
						
							| 13 | 11 12 | letri3d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑𝑐 𝐶 )  =  ( 𝐵 ↑𝑐 𝐶 )  ↔  ( ( 𝐴 ↑𝑐 𝐶 )  ≤  ( 𝐵 ↑𝑐 𝐶 )  ∧  ( 𝐵 ↑𝑐 𝐶 )  ≤  ( 𝐴 ↑𝑐 𝐶 ) ) ) ) | 
						
							| 14 | 8 9 13 | 3bitr4d | ⊢ ( 𝜑  →  ( 𝐴  =  𝐵  ↔  ( 𝐴 ↑𝑐 𝐶 )  =  ( 𝐵 ↑𝑐 𝐶 ) ) ) |