Step |
Hyp |
Ref |
Expression |
1 |
|
recxpf1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
recxpf1.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
3 |
|
recxpf1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
recxpf1.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
5 |
|
recxpf1.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
6 |
1 2 3 4 5
|
cxple2d |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ) ) |
7 |
3 4 1 2 5
|
cxple2d |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ∧ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
9 |
1 3
|
letri3d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
10 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
11 |
1 2 10
|
recxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) |
12 |
3 4 10
|
recxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℝ ) |
13 |
11 12
|
letri3d |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐵 ↑𝑐 𝐶 ) ↔ ( ( 𝐴 ↑𝑐 𝐶 ) ≤ ( 𝐵 ↑𝑐 𝐶 ) ∧ ( 𝐵 ↑𝑐 𝐶 ) ≤ ( 𝐴 ↑𝑐 𝐶 ) ) ) ) |
14 |
8 9 13
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ↑𝑐 𝐶 ) = ( 𝐵 ↑𝑐 𝐶 ) ) ) |