Metamath Proof Explorer
Description: Closure law for division of reals. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
redivcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
redivcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
redivcld.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
|
Assertion |
redivcld |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
redivcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
redivcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
redivcld.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
4 |
|
redivcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |