Metamath Proof Explorer


Theorem redivcli

Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)

Ref Expression
Hypotheses redivcl.1 𝐴 ∈ ℝ
redivcl.2 𝐵 ∈ ℝ
redivcl.3 𝐵 ≠ 0
Assertion redivcli ( 𝐴 / 𝐵 ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 redivcl.1 𝐴 ∈ ℝ
2 redivcl.2 𝐵 ∈ ℝ
3 redivcl.3 𝐵 ≠ 0
4 1 2 redivclzi ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℝ )
5 3 4 ax-mp ( 𝐴 / 𝐵 ) ∈ ℝ