Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
redivcl.2 | ⊢ 𝐵 ∈ ℝ | ||
redivcl.3 | ⊢ 𝐵 ≠ 0 | ||
Assertion | redivcli | ⊢ ( 𝐴 / 𝐵 ) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
2 | redivcl.2 | ⊢ 𝐵 ∈ ℝ | |
3 | redivcl.3 | ⊢ 𝐵 ≠ 0 | |
4 | 1 2 | redivclzi | ⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
5 | 3 4 | ax-mp | ⊢ ( 𝐴 / 𝐵 ) ∈ ℝ |