Description: Closure law for division of reals. (Contributed by NM, 9-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| redivcl.2 | ⊢ 𝐵 ∈ ℝ | ||
| Assertion | redivclzi | ⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℝ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | redivcl.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | redivcl.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | redivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) ∈ ℝ ) |