Metamath Proof Explorer
		
		
		
		Description:  Real part of a division.  Related to remul2 .  (Contributed by Mario
         Carneiro, 29-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | crred.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | remul2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | redivd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
				
					|  | Assertion | redivd | ⊢  ( 𝜑  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  =  ( ( ℜ ‘ 𝐵 )  /  𝐴 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | crred.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | remul2d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | redivd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 4 |  | rediv | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  =  ( ( ℜ ‘ 𝐵 )  /  𝐴 ) ) | 
						
							| 5 | 2 1 3 4 | syl3anc | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  =  ( ( ℜ ‘ 𝐵 )  /  𝐴 ) ) |