Metamath Proof Explorer
Description: Real part of a division. Related to remul2 . (Contributed by Mario
Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
crred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
remul2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
|
|
redivd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
Assertion |
redivd |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℜ ‘ 𝐵 ) / 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
crred.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
remul2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
redivd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
4 |
|
rediv |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℜ ‘ 𝐵 ) / 𝐴 ) ) |
5 |
2 1 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ℜ ‘ ( 𝐵 / 𝐴 ) ) = ( ( ℜ ‘ 𝐵 ) / 𝐴 ) ) |