Step |
Hyp |
Ref |
Expression |
1 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
2 |
1
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
3 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℝ ) |
4 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
5 |
1
|
simpri |
⊢ ℝfld ∈ DivRing |
6 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
7 |
|
eqid |
⊢ ( Unit ‘ ℝfld ) = ( Unit ‘ ℝfld ) |
8 |
|
re0g |
⊢ 0 = ( 0g ‘ ℝfld ) |
9 |
6 7 8
|
drngunit |
⊢ ( ℝfld ∈ DivRing → ( 𝐵 ∈ ( Unit ‘ ℝfld ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) ) |
10 |
5 9
|
ax-mp |
⊢ ( 𝐵 ∈ ( Unit ‘ ℝfld ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
11 |
4 10
|
sylibr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ( Unit ‘ ℝfld ) ) |
12 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
13 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
14 |
|
eqid |
⊢ ( /r ‘ ℝfld ) = ( /r ‘ ℝfld ) |
15 |
12 13 7 14
|
subrgdv |
⊢ ( ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ( Unit ‘ ℝfld ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) ) |
16 |
2 3 11 15
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ( /r ‘ ℝfld ) 𝐵 ) = ( 𝐴 / 𝐵 ) ) |