| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
| 2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 4 |
2 3
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 5 |
|
wrdred1 |
⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 6 |
5
|
a1i |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ) ) |
| 7 |
3
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ) |
| 8 |
|
redwlklem |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) |
| 9 |
8
|
3exp |
⊢ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 10 |
7 9
|
syl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) |
| 12 |
|
wlkcl |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 13 |
|
wrdred1hash |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 14 |
7 13
|
sylan |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
| 15 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 16 |
|
fzossrbm1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 18 |
|
ssralv |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 20 |
17
|
sselda |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 21 |
20
|
fvresd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) ) |
| 23 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 24 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 25 |
15
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 26 |
|
1zzd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 1 ∈ ℤ ) |
| 27 |
|
fzoaddel2 |
⊢ ( ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 28 |
24 25 26 27
|
syl3anc |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 29 |
23 28
|
sselid |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑘 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 30 |
29
|
fvresd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 31 |
30
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 32 |
22 31
|
eqeq12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 33 |
|
fvres |
⊢ ( 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 35 |
34
|
eqcomd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) |
| 36 |
35
|
fveq2d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) |
| 37 |
22
|
sneqd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → { ( 𝑃 ‘ 𝑘 ) } = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) |
| 38 |
36 37
|
eqeq12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } ) ) |
| 39 |
22 31
|
preq12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ) |
| 40 |
39 36
|
sseq12d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) |
| 41 |
32 38 40
|
ifpbi123d |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 42 |
41
|
biimpd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 43 |
42
|
ralimdva |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 44 |
19 43
|
syld |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 46 |
|
oveq2 |
⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ) |
| 48 |
47
|
raleqdv |
⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 50 |
45 49
|
sylibd |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 51 |
12 14 50
|
syl2an2r |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 52 |
6 11 51
|
3anim123d |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 53 |
52
|
imp |
⊢ ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) |
| 54 |
|
id |
⊢ ( 𝐺 ∈ V → 𝐺 ∈ V ) |
| 55 |
|
resexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ) |
| 56 |
|
resexg |
⊢ ( 𝑃 ∈ V → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) |
| 57 |
2 3
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) → ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ) ) |
| 58 |
57
|
bicomd |
⊢ ( ( 𝐺 ∈ V ∧ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ V ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∈ V ) → ( ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 59 |
54 55 56 58
|
syl3an |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) if- ( ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) = ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) = { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) } , { ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ 𝑘 ) , ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ‘ 𝑘 ) ) ) ) ↔ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 60 |
53 59
|
imbitrid |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 61 |
60
|
expcomd |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 62 |
4 61
|
sylbid |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 63 |
1 62
|
mpcom |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ) |
| 64 |
63
|
anabsi5 |
⊢ ( ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ( Walks ‘ 𝐺 ) ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |