Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
2 |
|
fzossfz |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) |
3 |
|
fssres |
⊢ ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
5 |
4
|
ex |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
6 |
|
lencl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
7 |
6
|
nn0zd |
⊢ ( 𝐹 ∈ Word 𝑆 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
8 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ Word 𝑆 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
11 |
|
wrdred1hash |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) ) |
12 |
|
oveq2 |
⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ↔ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
15 |
10 14
|
mpbird |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ) |
16 |
15
|
feq2d |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ↔ ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) ) |
17 |
5 16
|
sylibd |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑃 ↾ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) : ( 0 ... ( ♯ ‘ ( 𝐹 ↾ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) ) ⟶ 𝑉 ) |