Metamath Proof Explorer


Theorem reean

Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Hypotheses reean.1 𝑦 𝜑
reean.2 𝑥 𝜓
Assertion reean ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 reean.1 𝑦 𝜑
2 reean.2 𝑥 𝜓
3 nfv 𝑦 𝑥𝐴
4 3 1 nfan 𝑦 ( 𝑥𝐴𝜑 )
5 nfv 𝑥 𝑦𝐵
6 5 2 nfan 𝑥 ( 𝑦𝐵𝜓 )
7 4 6 eean ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
8 7 reeanlem ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )