Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
reean
Metamath Proof Explorer
Description: Rearrange restricted existential quantifiers. For a version based on
fewer axioms see reeanv . (Contributed by NM , 27-Oct-2010) (Proof
shortened by Andrew Salmon , 30-May-2011)
Ref
Expression
Hypotheses
reean.1
⊢ Ⅎ 𝑦 𝜑
reean.2
⊢ Ⅎ 𝑥 𝜓
Assertion
reean
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) )
Proof
Step
Hyp
Ref
Expression
1
reean.1
⊢ Ⅎ 𝑦 𝜑
2
reean.2
⊢ Ⅎ 𝑥 𝜓
3
nfv
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴
4
3 1
nfan
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 )
5
nfv
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵
6
5 2
nfan
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝜓 )
7
4 6
eean
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) )
8
7
reeanlem
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) )