Metamath Proof Explorer
Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010) (Proof shortened by Andrew Salmon, 30-May-2011)
|
|
Ref |
Expression |
|
Hypotheses |
reean.1 |
⊢ Ⅎ 𝑦 𝜑 |
|
|
reean.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
Assertion |
reean |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reean.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
reean.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
4 |
3 1
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐵 |
6 |
5 2
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) |
7 |
4 6
|
eean |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜓 ) ) ) |
8 |
7
|
reeanlem |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |