Metamath Proof Explorer


Theorem reeanlem

Description: Lemma factoring out common proof steps of reeanv and reean . (Contributed by Wolf Lammen, 20-Aug-2023)

Ref Expression
Hypothesis reeanlem.1 ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
Assertion reeanlem ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 reeanlem.1 ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
2 an4 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝜑𝜓 ) ) ↔ ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) )
3 2 2exbii ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝜑𝜓 ) ) ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑦𝐵𝜓 ) ) )
4 3 1 bitri ( ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝜑𝜓 ) ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
5 r2ex ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝜑𝜓 ) ) )
6 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
7 df-rex ( ∃ 𝑦𝐵 𝜓 ↔ ∃ 𝑦 ( 𝑦𝐵𝜓 ) )
8 6 7 anbi12i ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) ↔ ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∃ 𝑦 ( 𝑦𝐵𝜓 ) ) )
9 4 5 8 3bitr4i ( ∃ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃ 𝑦𝐵 𝜓 ) )