Step |
Hyp |
Ref |
Expression |
1 |
|
efle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ) ) |
2 |
|
efle |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ 𝐴 ↔ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) |
4 |
1 3
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) |
5 |
|
letri3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
6 |
|
reefcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ ) |
7 |
|
reefcl |
⊢ ( 𝐵 ∈ ℝ → ( exp ‘ 𝐵 ) ∈ ℝ ) |
8 |
|
letri3 |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℝ ∧ ( exp ‘ 𝐵 ) ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) |
9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ ( ( exp ‘ 𝐴 ) ≤ ( exp ‘ 𝐵 ) ∧ ( exp ‘ 𝐵 ) ≤ ( exp ‘ 𝐴 ) ) ) ) |
10 |
4 5 9
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( exp ‘ 𝐴 ) = ( exp ‘ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |