Metamath Proof Explorer


Theorem reefcl

Description: The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion reefcl ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 efval ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
3 1 2 syl ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
4 nn0uz 0 = ( ℤ ‘ 0 )
5 0zd ( 𝐴 ∈ ℝ → 0 ∈ ℤ )
6 eqid ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
7 6 eftval ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
8 7 adantl ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
9 reeftcl ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ )
10 6 efcllem ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ )
11 1 10 syl ( 𝐴 ∈ ℝ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ )
12 4 5 8 9 11 isumrecl ( 𝐴 ∈ ℝ → Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ )
13 3 12 eqeltrd ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ )