Metamath Proof Explorer


Theorem reefcld

Description: The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis reefcld.1 ( 𝜑𝐴 ∈ ℝ )
Assertion reefcld ( 𝜑 → ( exp ‘ 𝐴 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 reefcld.1 ( 𝜑𝐴 ∈ ℝ )
2 reefcl ( 𝐴 ∈ ℝ → ( exp ‘ 𝐴 ) ∈ ℝ )
3 1 2 syl ( 𝜑 → ( exp ‘ 𝐴 ) ∈ ℝ )