Step |
Hyp |
Ref |
Expression |
1 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
2 |
|
ffn |
⊢ ( exp : ℂ ⟶ ℂ → exp Fn ℂ ) |
3 |
1 2
|
ax-mp |
⊢ exp Fn ℂ |
4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
5 |
|
fnssres |
⊢ ( ( exp Fn ℂ ∧ ℝ ⊆ ℂ ) → ( exp ↾ ℝ ) Fn ℝ ) |
6 |
3 4 5
|
mp2an |
⊢ ( exp ↾ ℝ ) Fn ℝ |
7 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
8 |
|
rpefcl |
⊢ ( 𝑥 ∈ ℝ → ( exp ‘ 𝑥 ) ∈ ℝ+ ) |
9 |
7 8
|
eqeltrd |
⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ ) |
10 |
9
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ |
11 |
|
ffnfv |
⊢ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ↔ ( ( exp ↾ ℝ ) Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( ( exp ↾ ℝ ) ‘ 𝑥 ) ∈ ℝ+ ) ) |
12 |
6 10 11
|
mpbir2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
13 |
|
fvres |
⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) |
14 |
7 13
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) ↔ ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) ) |
15 |
|
reef11 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
16 |
15
|
biimpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
17 |
14 16
|
sylbid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
18 |
17
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
19 |
|
dff13 |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ ↔ ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( ( exp ↾ ℝ ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
20 |
12 18 19
|
mpbir2an |
⊢ ( exp ↾ ℝ ) : ℝ –1-1→ ℝ+ |