Step |
Hyp |
Ref |
Expression |
1 |
|
reefgim.1 |
⊢ 𝑃 = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
2 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
3 |
|
eqid |
⊢ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) = ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) |
4 |
3
|
rpmsubg |
⊢ ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) |
5 |
|
cnex |
⊢ ℂ ∈ V |
6 |
5
|
difexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
7 |
|
rpcndif0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ( ℂ ∖ { 0 } ) ) |
8 |
7
|
ssriv |
⊢ ℝ+ ⊆ ( ℂ ∖ { 0 } ) |
9 |
|
ressabs |
⊢ ( ( ( ℂ ∖ { 0 } ) ∈ V ∧ ℝ+ ⊆ ( ℂ ∖ { 0 } ) ) → ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) ) |
10 |
6 8 9
|
mp2an |
⊢ ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) = ( ( mulGrp ‘ ℂfld ) ↾s ℝ+ ) |
11 |
1 10
|
eqtr4i |
⊢ 𝑃 = ( ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ↾s ℝ+ ) |
12 |
11
|
subgbas |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → ℝ+ = ( Base ‘ 𝑃 ) ) |
13 |
4 12
|
ax-mp |
⊢ ℝ+ = ( Base ‘ 𝑃 ) |
14 |
|
replusg |
⊢ + = ( +g ‘ ℝfld ) |
15 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
16 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
17 |
15 16
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
18 |
1 17
|
ressplusg |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → · = ( +g ‘ 𝑃 ) ) |
19 |
4 18
|
ax-mp |
⊢ · = ( +g ‘ 𝑃 ) |
20 |
|
resubdrg |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) |
21 |
20
|
simpli |
⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
22 |
|
df-refld |
⊢ ℝfld = ( ℂfld ↾s ℝ ) |
23 |
22
|
subrgring |
⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) → ℝfld ∈ Ring ) |
24 |
21 23
|
ax-mp |
⊢ ℝfld ∈ Ring |
25 |
|
ringgrp |
⊢ ( ℝfld ∈ Ring → ℝfld ∈ Grp ) |
26 |
24 25
|
mp1i |
⊢ ( ⊤ → ℝfld ∈ Grp ) |
27 |
11
|
subggrp |
⊢ ( ℝ+ ∈ ( SubGrp ‘ ( ( mulGrp ‘ ℂfld ) ↾s ( ℂ ∖ { 0 } ) ) ) → 𝑃 ∈ Grp ) |
28 |
4 27
|
mp1i |
⊢ ( ⊤ → 𝑃 ∈ Grp ) |
29 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
30 |
|
f1of |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
31 |
29 30
|
mp1i |
⊢ ( ⊤ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
32 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
33 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
34 |
|
efadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) |
35 |
32 33 34
|
syl2an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( exp ‘ ( 𝑥 + 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) |
36 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
37 |
36
|
fvresd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( exp ‘ ( 𝑥 + 𝑦 ) ) ) |
38 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
39 |
|
fvres |
⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) |
40 |
38 39
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ 𝑦 ) ) ) |
41 |
35 37 40
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( exp ↾ ℝ ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) · ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
43 |
2 13 14 19 26 28 31 42
|
isghmd |
⊢ ( ⊤ → ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) ) |
44 |
43
|
mptru |
⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) |
45 |
2 13
|
isgim |
⊢ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) ↔ ( ( exp ↾ ℝ ) ∈ ( ℝfld GrpHom 𝑃 ) ∧ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ) ) |
46 |
44 29 45
|
mpbir2an |
⊢ ( exp ↾ ℝ ) ∈ ( ℝfld GrpIso 𝑃 ) |