Step |
Hyp |
Ref |
Expression |
1 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
2 |
|
eflt |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
3 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
4 |
|
fvres |
⊢ ( 𝑦 ∈ ℝ → ( ( exp ↾ ℝ ) ‘ 𝑦 ) = ( exp ‘ 𝑦 ) ) |
5 |
3 4
|
breqan12d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ↔ ( exp ‘ 𝑥 ) < ( exp ‘ 𝑦 ) ) ) |
6 |
2 5
|
bitr4d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) |
7 |
6
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) |
8 |
|
df-isom |
⊢ ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ↔ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 ↔ ( ( exp ↾ ℝ ) ‘ 𝑥 ) < ( ( exp ↾ ℝ ) ‘ 𝑦 ) ) ) ) |
9 |
1 7 8
|
mpbir2an |
⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |