Metamath Proof Explorer


Theorem reeftcl

Description: The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008)

Ref Expression
Assertion reeftcl ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 reexpcl ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐴𝐾 ) ∈ ℝ )
2 faccl ( 𝐾 ∈ ℕ0 → ( ! ‘ 𝐾 ) ∈ ℕ )
3 2 adantl ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( ! ‘ 𝐾 ) ∈ ℕ )
4 1 3 nndivred ( ( 𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐴𝐾 ) / ( ! ‘ 𝐾 ) ) ∈ ℝ )