Step |
Hyp |
Ref |
Expression |
1 |
|
eftl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
nn0z |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
5 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
6 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
7 |
6
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
8 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
11 |
|
reeftcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
12 |
10 7 11
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
13 |
9 12
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
14 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
15 |
1
|
eftlcvg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
16 |
14 15
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
17 |
2 4 5 13 16
|
isumrecl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |