Metamath Proof Explorer
Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
reexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
reexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
|
Assertion |
reexpcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reexpcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
reexpcld.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |