Metamath Proof Explorer


Theorem reexpcld

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1 ( 𝜑𝐴 ∈ ℝ )
reexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
Assertion reexpcld ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 reexpcld.1 ( 𝜑𝐴 ∈ ℝ )
2 reexpcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 reexpcl ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴𝑁 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ )