Metamath Proof Explorer
Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpexpclzd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
rpexpclzd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
|
|
rpexpclzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
|
Assertion |
reexpclzd |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpexpclzd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
rpexpclzd.2 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
3 |
|
rpexpclzd.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
4 |
|
reexpclz |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑁 ) ∈ ℝ ) |