Metamath Proof Explorer


Theorem reexpclzd

Description: Closure of exponentiation of reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpexpclzd.1 ( 𝜑𝐴 ∈ ℝ )
rpexpclzd.2 ( 𝜑𝐴 ≠ 0 )
rpexpclzd.3 ( 𝜑𝑁 ∈ ℤ )
Assertion reexpclzd ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rpexpclzd.1 ( 𝜑𝐴 ∈ ℝ )
2 rpexpclzd.2 ( 𝜑𝐴 ≠ 0 )
3 rpexpclzd.3 ( 𝜑𝑁 ∈ ℤ )
4 reexpclz ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℝ )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴𝑁 ) ∈ ℝ )