Metamath Proof Explorer
		
		
		
		Description:  Closure of exponentiation of reals.  (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rpexpclzd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | rpexpclzd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
					
						|  |  | rpexpclzd.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
				
					|  | Assertion | reexpclzd | ⊢  ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpexpclzd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rpexpclzd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | rpexpclzd.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | reexpclz | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0  ∧  𝑁  ∈  ℤ )  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) | 
						
							| 5 | 1 2 3 4 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℝ ) |