Metamath Proof Explorer


Theorem reexplog

Description: Exponentiation of a positive real number to an integer power. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion reexplog ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) )

Proof

Step Hyp Ref Expression
1 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
2 1 recnd ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ )
3 efexp ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) )
4 2 3 sylan ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) )
5 reeflog ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 )
6 5 oveq1d ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴𝑁 ) )
7 6 adantr ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) ↑ 𝑁 ) = ( 𝐴𝑁 ) )
8 4 7 eqtr2d ( ( 𝐴 ∈ ℝ+𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 𝐴 ) ) ) )