Metamath Proof Explorer


Theorem ref

Description: Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion ref ℜ : ℂ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 df-re ℜ = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 + ( ∗ ‘ 𝑥 ) ) / 2 ) )
2 reval ( 𝑥 ∈ ℂ → ( ℜ ‘ 𝑥 ) = ( ( 𝑥 + ( ∗ ‘ 𝑥 ) ) / 2 ) )
3 recl ( 𝑥 ∈ ℂ → ( ℜ ‘ 𝑥 ) ∈ ℝ )
4 2 3 eqeltrrd ( 𝑥 ∈ ℂ → ( ( 𝑥 + ( ∗ ‘ 𝑥 ) ) / 2 ) ∈ ℝ )
5 1 4 fmpti ℜ : ℂ ⟶ ℝ