Description: The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | refld | ⊢ ℝfld ∈ Field |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resubdrg | ⊢ ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing ) | |
2 | 1 | simpri | ⊢ ℝfld ∈ DivRing |
3 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
4 | cncrng | ⊢ ℂfld ∈ CRing | |
5 | 1 | simpli | ⊢ ℝ ∈ ( SubRing ‘ ℂfld ) |
6 | eqid | ⊢ ( ℂfld ↾s ℝ ) = ( ℂfld ↾s ℝ ) | |
7 | 6 | subrgcrng | ⊢ ( ( ℂfld ∈ CRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s ℝ ) ∈ CRing ) |
8 | 4 5 7 | mp2an | ⊢ ( ℂfld ↾s ℝ ) ∈ CRing |
9 | 3 8 | eqeltri | ⊢ ℝfld ∈ CRing |
10 | isfld | ⊢ ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) ) | |
11 | 2 9 10 | mpbir2an | ⊢ ℝfld ∈ Field |