Metamath Proof Explorer


Theorem refld

Description: The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion refld fld ∈ Field

Proof

Step Hyp Ref Expression
1 resubdrg ( ℝ ∈ ( SubRing ‘ ℂfld ) ∧ ℝfld ∈ DivRing )
2 1 simpri fld ∈ DivRing
3 df-refld fld = ( ℂflds ℝ )
4 cncrng fld ∈ CRing
5 1 simpli ℝ ∈ ( SubRing ‘ ℂfld )
6 eqid ( ℂflds ℝ ) = ( ℂflds ℝ )
7 6 subrgcrng ( ( ℂfld ∈ CRing ∧ ℝ ∈ ( SubRing ‘ ℂfld ) ) → ( ℂflds ℝ ) ∈ CRing )
8 4 5 7 mp2an ( ℂflds ℝ ) ∈ CRing
9 3 8 eqeltri fld ∈ CRing
10 isfld ( ℝfld ∈ Field ↔ ( ℝfld ∈ DivRing ∧ ℝfld ∈ CRing ) )
11 2 9 10 mpbir2an fld ∈ Field