Metamath Proof Explorer


Theorem refldivcl

Description: The floor function of a division of a real number by a positive real number is a real number. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion refldivcl ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rerpdivcl ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( 𝐾 / 𝐿 ) ∈ ℝ )
2 reflcl ( ( 𝐾 / 𝐿 ) ∈ ℝ → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℝ )
3 1 2 syl ( ( 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ+ ) → ( ⌊ ‘ ( 𝐾 / 𝐿 ) ) ∈ ℝ )