| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dmeq | 
							⊢ ( 𝑅  =  𝑆  →  dom  𝑅  =  dom  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑅  =  𝑆  →  ran  𝑅  =  ran  𝑆 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							xpeq12d | 
							⊢ ( 𝑅  =  𝑆  →  ( dom  𝑅  ×  ran  𝑅 )  =  ( dom  𝑆  ×  ran  𝑆 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ineq2d | 
							⊢ ( 𝑅  =  𝑆  →  (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  =  (  I   ∩  ( dom  𝑆  ×  ran  𝑆 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							⊢ ( 𝑅  =  𝑆  →  𝑅  =  𝑆 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							sseq12d | 
							⊢ ( 𝑅  =  𝑆  →  ( (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ⊆  𝑅  ↔  (  I   ∩  ( dom  𝑆  ×  ran  𝑆 ) )  ⊆  𝑆 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							releq | 
							⊢ ( 𝑅  =  𝑆  →  ( Rel  𝑅  ↔  Rel  𝑆 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							anbi12d | 
							⊢ ( 𝑅  =  𝑆  →  ( ( (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ⊆  𝑅  ∧  Rel  𝑅 )  ↔  ( (  I   ∩  ( dom  𝑆  ×  ran  𝑆 ) )  ⊆  𝑆  ∧  Rel  𝑆 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dfrefrel2 | 
							⊢ (  RefRel  𝑅  ↔  ( (  I   ∩  ( dom  𝑅  ×  ran  𝑅 ) )  ⊆  𝑅  ∧  Rel  𝑅 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							dfrefrel2 | 
							⊢ (  RefRel  𝑆  ↔  ( (  I   ∩  ( dom  𝑆  ×  ran  𝑆 ) )  ⊆  𝑆  ∧  Rel  𝑆 ) )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							3bitr4g | 
							⊢ ( 𝑅  =  𝑆  →  (  RefRel  𝑅  ↔   RefRel  𝑆 ) )  |