Metamath Proof Explorer


Theorem refrelressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refrelressn ( 𝐴𝑉 → RefRel ( 𝑅 ↾ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 refressn ( 𝐴𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 )
2 relres Rel ( 𝑅 ↾ { 𝐴 } )
3 dfrefrel5 ( RefRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) )
4 1 2 3 sylanblrc ( 𝐴𝑉 → RefRel ( 𝑅 ↾ { 𝐴 } ) )