Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive. (Contributed by Peter Mazsa, 12-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelressn | ⊢ ( 𝐴 ∈ 𝑉 → RefRel ( 𝑅 ↾ { 𝐴 } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refressn | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) | |
2 | relres | ⊢ Rel ( 𝑅 ↾ { 𝐴 } ) | |
3 | dfrefrel5 | ⊢ ( RefRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) ) | |
4 | 1 2 3 | sylanblrc | ⊢ ( 𝐴 ∈ 𝑉 → RefRel ( 𝑅 ↾ { 𝐴 } ) ) |