Metamath Proof Explorer


Theorem refressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refressn ( 𝐴𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 )

Proof

Step Hyp Ref Expression
1 elin ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) ↔ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) )
2 eldmressnALTV ( 𝑥 ∈ V → ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴𝐴 ∈ dom 𝑅 ) ) )
3 2 elv ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴𝐴 ∈ dom 𝑅 ) )
4 3 simplbi ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝑥 = 𝐴 )
5 4 adantr ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 )
6 1 5 sylbi ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 )
7 6 a1i ( 𝐴𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) )
8 elrnressn ( ( 𝐴𝑉𝑥 ∈ V ) → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) )
9 8 elvd ( 𝐴𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) )
10 9 biimpd ( 𝐴𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) → 𝐴 𝑅 𝑥 ) )
11 10 adantld ( 𝐴𝑉 → ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) )
12 1 11 biimtrid ( 𝐴𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) )
13 4 eqcomd ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝐴 = 𝑥 )
14 13 breq1d ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → ( 𝐴 𝑅 𝑥𝑥 𝑅 𝑥 ) )
15 14 adantr ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥𝑥 𝑅 𝑥 ) )
16 1 15 sylbi ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥𝑥 𝑅 𝑥 ) )
17 12 16 mpbidi ( 𝐴𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 𝑅 𝑥 ) )
18 7 17 jcad ( 𝐴𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝑥 = 𝐴𝑥 𝑅 𝑥 ) ) )
19 brressn ( ( 𝑥 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴𝑥 𝑅 𝑥 ) ) )
20 19 el2v ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴𝑥 𝑅 𝑥 ) )
21 18 20 imbitrrdi ( 𝐴𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) )
22 21 ralrimiv ( 𝐴𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 )