Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) ↔ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) ) |
2 |
|
eldmressnALTV |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) ) |
3 |
2
|
elv |
⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) |
4 |
3
|
simplbi |
⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝑥 = 𝐴 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
6 |
1 5
|
sylbi |
⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 = 𝐴 ) ) |
8 |
|
elrnressn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) ) |
9 |
8
|
elvd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ↔ 𝐴 𝑅 𝑥 ) ) |
10 |
9
|
biimpd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) → 𝐴 𝑅 𝑥 ) ) |
11 |
10
|
adantld |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) ) |
12 |
1 11
|
biimtrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝐴 𝑅 𝑥 ) ) |
13 |
4
|
eqcomd |
⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → 𝐴 = 𝑥 ) |
14 |
13
|
breq1d |
⊢ ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑥 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ∧ 𝑥 ∈ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
16 |
1 15
|
sylbi |
⊢ ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝐴 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) ) |
17 |
12 16
|
mpbidi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 𝑅 𝑥 ) ) |
18 |
7 17
|
jcad |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) ) |
19 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) ) |
20 |
19
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑥 ) ) |
21 |
18 20
|
imbitrrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) ) |
22 |
21
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑥 ∈ ( dom ( 𝑅 ↾ { 𝐴 } ) ∩ ran ( 𝑅 ↾ { 𝐴 } ) ) 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) |