Step |
Hyp |
Ref |
Expression |
1 |
|
refsumcn.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
refsumcn.2 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
3 |
|
refsumcn.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
refsumcn.4 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
refsumcn.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
7 |
6
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
8 |
2 7
|
eqtri |
⊢ 𝐾 = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
9 |
8
|
oveq2i |
⊢ ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
10 |
5 9
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
11 |
6
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
14 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
15 |
2 14
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
17 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
18 |
13 16 5 17
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
19 |
18
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ⊆ ℝ ) |
20 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ℝ ⊆ ℂ ) |
22 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
23 |
12 19 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
24 |
10 23
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
25 |
6 3 4 24
|
fsumcnf |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
26 |
11
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ Fin ) |
28 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝜑 ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
30 |
28 29
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ) |
31 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) |
32 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
33 |
32
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℝ ) |
34 |
18 33
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ ) |
35 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℝ ) ) |
36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 → 𝐵 ∈ ℝ ) ) |
37 |
30 31 36
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
38 |
27 37
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
39 |
38
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) ) |
40 |
1 39
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
41 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
42 |
41
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 ) |
43 |
40 42
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
45 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
46 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
47 |
44 45 46
|
fvelrnbf |
⊢ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) Fn 𝑋 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) ) |
48 |
43 47
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ↔ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) ) |
49 |
48
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) |
50 |
46
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
51 |
50
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) |
52 |
1 51
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
53 |
|
nfcv |
⊢ Ⅎ 𝑥 ℝ |
54 |
53
|
nfcri |
⊢ Ⅎ 𝑥 𝑦 ∈ ℝ |
55 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
56 |
55 38
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) ) |
57 |
41
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
58 |
56 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
59 |
58
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
60 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) |
61 |
59 60
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → Σ 𝑘 ∈ 𝐴 𝐵 = 𝑦 ) |
62 |
38
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
63 |
61 62
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℝ ) |
64 |
63
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) ∧ 𝑥 ∈ 𝑋 ∧ ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℝ ) |
65 |
64
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ( 𝑥 ∈ 𝑋 → ( ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ ℝ ) ) ) |
66 |
52 54 65
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → ( ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ‘ 𝑥 ) = 𝑦 → 𝑦 ∈ ℝ ) ) |
67 |
49 66
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ) → 𝑦 ∈ ℝ ) |
68 |
67
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) → 𝑦 ∈ ℝ ) ) |
69 |
68
|
ssrdv |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ℝ ) |
70 |
20
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
71 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
72 |
26 69 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) ) |
73 |
25 72
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) ) |
74 |
73 9
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ 𝐴 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |