Metamath Proof Explorer


Theorem rege0subm

Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion rege0subm ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
2 1 sseli ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℝ )
3 2 recnd ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ )
4 ge0addcl ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) )
5 0e0icopnf 0 ∈ ( 0 [,) +∞ )
6 3 4 5 cnsubmlem ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld )