Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rege0subm | ⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
2 | 1 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℝ ) |
3 | 2 | recnd | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) → 𝑥 ∈ ℂ ) |
4 | ge0addcl | ⊢ ( ( 𝑥 ∈ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ( 0 [,) +∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
5 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
6 | 3 4 5 | cnsubmlem | ⊢ ( 0 [,) +∞ ) ∈ ( SubMnd ‘ ℂfld ) |