Metamath Proof Explorer


Theorem reghaus

Description: A regular T_0 space is Hausdorff. In other words, a T_3 space is T_2 . A regular Hausdorff or T_0 space is also known as a T_3 space. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion reghaus ( 𝐽 ∈ Reg → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) )

Proof

Step Hyp Ref Expression
1 haust1 ( 𝐽 ∈ Haus → 𝐽 ∈ Fre )
2 t1t0 ( 𝐽 ∈ Fre → 𝐽 ∈ Kol2 )
3 1 2 syl ( 𝐽 ∈ Haus → 𝐽 ∈ Kol2 )
4 regr1 ( 𝐽 ∈ Reg → ( KQ ‘ 𝐽 ) ∈ Haus )
5 4 anim2i ( ( 𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg ) → ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) )
6 ishaus3 ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Kol2 ∧ ( KQ ‘ 𝐽 ) ∈ Haus ) )
7 5 6 sylibr ( ( 𝐽 ∈ Kol2 ∧ 𝐽 ∈ Reg ) → 𝐽 ∈ Haus )
8 7 expcom ( 𝐽 ∈ Reg → ( 𝐽 ∈ Kol2 → 𝐽 ∈ Haus ) )
9 3 8 impbid2 ( 𝐽 ∈ Reg → ( 𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2 ) )