Metamath Proof Explorer


Theorem reglog1

Description: General log of 1 is 0. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logb1 instead.

Ref Expression
Assertion reglog1 ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( ( log ‘ 1 ) / ( log ‘ 𝐶 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 log1 ( log ‘ 1 ) = 0
2 1 oveq1i ( ( log ‘ 1 ) / ( log ‘ 𝐶 ) ) = ( 0 / ( log ‘ 𝐶 ) )
3 relogcl ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ )
4 3 recnd ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ )
5 4 adantr ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ∈ ℂ )
6 logne0 ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ≠ 0 )
7 5 6 div0d ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( 0 / ( log ‘ 𝐶 ) ) = 0 )
8 2 7 eqtrid ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( ( log ‘ 1 ) / ( log ‘ 𝐶 ) ) = 0 )