Metamath Proof Explorer


Theorem reglogbas

Description: General log of the base is 1. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use logbid1 instead.

Ref Expression
Assertion reglogbas ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( ( log ‘ 𝐶 ) / ( log ‘ 𝐶 ) ) = 1 )

Proof

Step Hyp Ref Expression
1 relogcl ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ )
2 1 recnd ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ )
3 2 adantr ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ∈ ℂ )
4 logne0 ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( log ‘ 𝐶 ) ≠ 0 )
5 3 4 dividd ( ( 𝐶 ∈ ℝ+𝐶 ≠ 1 ) → ( ( log ‘ 𝐶 ) / ( log ‘ 𝐶 ) ) = 1 )