Step |
Hyp |
Ref |
Expression |
1 |
|
logleb |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |
3 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
5 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
6 |
5
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐵 ) ∈ ℝ ) |
7 |
|
relogcl |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ ) |
8 |
7
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( log ‘ 𝐶 ) ∈ ℝ ) |
9 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
11 |
|
logltb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 1 < 𝐶 ↔ ( log ‘ 1 ) < ( log ‘ 𝐶 ) ) ) |
12 |
10 11
|
mpan |
⊢ ( 𝐶 ∈ ℝ+ → ( 1 < 𝐶 ↔ ( log ‘ 1 ) < ( log ‘ 𝐶 ) ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) → ( log ‘ 1 ) < ( log ‘ 𝐶 ) ) |
14 |
9 13
|
eqbrtrrid |
⊢ ( ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) → 0 < ( log ‘ 𝐶 ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → 0 < ( log ‘ 𝐶 ) ) |
16 |
|
lediv1 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ∧ ( ( log ‘ 𝐶 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐶 ) ) ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) ≤ ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) ) |
17 |
4 6 8 15 16
|
syl112anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) ≤ ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) ) |
18 |
2 17
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ ( 𝐶 ∈ ℝ+ ∧ 1 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( ( log ‘ 𝐴 ) / ( log ‘ 𝐶 ) ) ≤ ( ( log ‘ 𝐵 ) / ( log ‘ 𝐶 ) ) ) ) |