Metamath Proof Explorer


Theorem regsep

Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion regsep ( ( 𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈 ) → ∃ 𝑥𝐽 ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 isreg ( 𝐽 ∈ Reg ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦𝐽𝑧𝑦𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ) )
2 sseq2 ( 𝑦 = 𝑈 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) )
3 2 anbi2d ( 𝑦 = 𝑈 → ( ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
4 3 rexbidv ( 𝑦 = 𝑈 → ( ∃ 𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
5 4 raleqbi1dv ( 𝑦 = 𝑈 → ( ∀ 𝑧𝑦𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∀ 𝑧𝑈𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
6 5 rspccv ( ∀ 𝑦𝐽𝑧𝑦𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) → ( 𝑈𝐽 → ∀ 𝑧𝑈𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
7 1 6 simplbiim ( 𝐽 ∈ Reg → ( 𝑈𝐽 → ∀ 𝑧𝑈𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
8 eleq1 ( 𝑧 = 𝐴 → ( 𝑧𝑥𝐴𝑥 ) )
9 8 anbi1d ( 𝑧 = 𝐴 → ( ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ↔ ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
10 9 rexbidv ( 𝑧 = 𝐴 → ( ∃ 𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ↔ ∃ 𝑥𝐽 ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
11 10 rspccv ( ∀ 𝑧𝑈𝑥𝐽 ( 𝑧𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) → ( 𝐴𝑈 → ∃ 𝑥𝐽 ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) )
12 7 11 syl6 ( 𝐽 ∈ Reg → ( 𝑈𝐽 → ( 𝐴𝑈 → ∃ 𝑥𝐽 ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) )
13 12 3imp ( ( 𝐽 ∈ Reg ∧ 𝑈𝐽𝐴𝑈 ) → ∃ 𝑥𝐽 ( 𝐴𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) )