Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | regtop | ⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isreg | ⊢ ( 𝐽 ∈ Reg ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐽 ( 𝑦 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝐽 ∈ Reg → 𝐽 ∈ Top ) |