Metamath Proof Explorer


Theorem rehalfcl

Description: Real closure of half. (Contributed by NM, 1-Jan-2006)

Ref Expression
Assertion rehalfcl ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 2ne0 2 ≠ 0
3 redivcl ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℝ ∧ 2 ≠ 0 ) → ( 𝐴 / 2 ) ∈ ℝ )
4 1 2 3 mp3an23 ( 𝐴 ∈ ℝ → ( 𝐴 / 2 ) ∈ ℝ )