Metamath Proof Explorer


Theorem rehaus

Description: The standard topology on the reals is Hausdorff. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion rehaus ( topGen ‘ ran (,) ) ∈ Haus

Proof

Step Hyp Ref Expression
1 eqid ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) )
2 1 rexmet ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ )
3 eqid ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
4 1 3 tgioo ( topGen ‘ ran (,) ) = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) )
5 4 methaus ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) → ( topGen ‘ ran (,) ) ∈ Haus )
6 2 5 ax-mp ( topGen ‘ ran (,) ) ∈ Haus