Metamath Proof Explorer


Theorem rei

Description: The real part of _i . (Contributed by Scott Fenton, 9-Jun-2006)

Ref Expression
Assertion rei ( ℜ ‘ i ) = 0

Proof

Step Hyp Ref Expression
1 ax-icn i ∈ ℂ
2 ax-1cn 1 ∈ ℂ
3 1 2 mulcli ( i · 1 ) ∈ ℂ
4 3 addid2i ( 0 + ( i · 1 ) ) = ( i · 1 )
5 4 fveq2i ( ℜ ‘ ( 0 + ( i · 1 ) ) ) = ( ℜ ‘ ( i · 1 ) )
6 0re 0 ∈ ℝ
7 1re 1 ∈ ℝ
8 crre ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ℜ ‘ ( 0 + ( i · 1 ) ) ) = 0 )
9 6 7 8 mp2an ( ℜ ‘ ( 0 + ( i · 1 ) ) ) = 0
10 1 mulid1i ( i · 1 ) = i
11 10 fveq2i ( ℜ ‘ ( i · 1 ) ) = ( ℜ ‘ i )
12 5 9 11 3eqtr3ri ( ℜ ‘ i ) = 0