Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 7-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | reim0 | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
2 | it0e0 | ⊢ ( i · 0 ) = 0 | |
3 | 2 | oveq2i | ⊢ ( 𝐴 + ( i · 0 ) ) = ( 𝐴 + 0 ) |
4 | addid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) | |
5 | 3 4 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( i · 0 ) ) = 𝐴 ) |
6 | 1 5 | syl | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( i · 0 ) ) = 𝐴 ) |
7 | 6 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = ( ℑ ‘ 𝐴 ) ) |
8 | 0re | ⊢ 0 ∈ ℝ | |
9 | crim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = 0 ) | |
10 | 8 9 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = 0 ) |
11 | 7 10 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) |