Metamath Proof Explorer


Theorem reim0

Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion reim0 ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 recn ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ )
2 it0e0 ( i · 0 ) = 0
3 2 oveq2i ( 𝐴 + ( i · 0 ) ) = ( 𝐴 + 0 )
4 addid1 ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 )
5 3 4 eqtrid ( 𝐴 ∈ ℂ → ( 𝐴 + ( i · 0 ) ) = 𝐴 )
6 1 5 syl ( 𝐴 ∈ ℝ → ( 𝐴 + ( i · 0 ) ) = 𝐴 )
7 6 fveq2d ( 𝐴 ∈ ℝ → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = ( ℑ ‘ 𝐴 ) )
8 0re 0 ∈ ℝ
9 crim ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = 0 )
10 8 9 mpan2 ( 𝐴 ∈ ℝ → ( ℑ ‘ ( 𝐴 + ( i · 0 ) ) ) = 0 )
11 7 10 eqtr3d ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 )