| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reim0 |
⊢ ( 𝐴 ∈ ℝ → ( ℑ ‘ 𝐴 ) = 0 ) |
| 2 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
| 4 |
|
oveq2 |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( i · ( ℑ ‘ 𝐴 ) ) = ( i · 0 ) ) |
| 5 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
| 6 |
4 5
|
eqtrdi |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( i · ( ℑ ‘ 𝐴 ) ) = 0 ) |
| 7 |
6
|
oveq2d |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐴 ) + 0 ) ) |
| 8 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
9
|
addridd |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ 𝐴 ) + 0 ) = ( ℜ ‘ 𝐴 ) ) |
| 11 |
7 10
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 12 |
3 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 = ( ℜ ‘ 𝐴 ) ) |
| 13 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 14 |
12 13
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ ) |
| 15 |
14
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ ) ) |
| 16 |
1 15
|
impbid2 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |