Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
relcnv
Next ⟩
relbrcnvg
Metamath Proof Explorer
Ascii
Structured
Theorem
relcnv
Description:
A converse is a relation. Theorem 12 of
Suppes
p. 62.
(Contributed by
NM
, 29-Oct-1996)
Ref
Expression
Assertion
relcnv
⊢
Rel
◡
𝐴
Proof
Step
Hyp
Ref
Expression
1
df-cnv
⊢
◡
𝐴
= { 〈
𝑥
,
𝑦
〉 ∣
𝑦
𝐴
𝑥
}
2
1
relopabiv
⊢
Rel
◡
𝐴